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ABSTRACT

Temperature integrals having a negative exponent (m) on temperature have been evaluated for
m=—1/2, —1, —3/2, and —2 with E=30-100 kcal mole "' and T=300-1000 K. For a given value of
m, —log I is linearly related to E and 1/7. The slopes and intercepts of these lincar equations have been
found to be functions of £ and 7. Also, a linear relationship cxists between —log 7 and i for given valucs
of E and 7. By combining these results with those previously published for temperature integrals having
positive values of m. equations have been obtained that permit accurate cvaluation of temperaturce
integrals for any combination of m. E. and T values.

INTRODUCTION
Integrals of the form
T
1=f T™ e~ E/RT 4T (1)
0

where T is the temperature (K), E is the activation energy, R is the molar gas
constant, and m is a constant, 0, =1/2, =1, =3 /2, +2, elc,, arise in the treatment
of kinetic data from non-isothermal studies [1]. There has been a great deal of
interest in evaluating these integrals for many years. Approaches include numerical
integration [2,3], approximation by series [4-8], evaluation by small computer [9] or
a programmable calculator [10,11}, .and graphical methods [12]. Each of these
methods possesses some advantages for certain applications. In our recent studies,
evaluation of the case with temperature independent frequency factor (m = 0) [10]
and temperature dependent frequency factor cases (m=1/2, 1, 3/2,-and 2) [11]
were evaluated. It was also shown that by choosing specific values for E and T, the
resulting —log/ values gave linear relationships with m. In the present work, we
have evaluated the integrals where m has negative values (m= —1/2, —1, —3/2,
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and —2). Using these results and those from the previous studies, we now have
values for —log/7 using nine values of m from —2 to +2. Therefore, it has been
possible to determine quite accurately the dependence of —logl on a range of m
values and this report presents the results of that work. We have, therefore, now
completed a comprehensive set of tables of integrals and numerical relationships.

METHODS

Evaluations of temperature integrals for m=0, 1/2, 1, 3/2, and 2 were previ-
ously carried out using a Texas Instruments TI-59 Programmable calculator [10,11].
In this work, the integrals form= —1/2, —1, —3/2, and —2 were evaluated using
a Hewlett-Packard HP-34C calculator employing the three-digit scientific notation
accuracy (f SCI 3) [13]. This instrument has a built-in numerical integration algo-
rithm that calls as a subroutine the previously entered sequence to evaluate the
function being integrated. The HP-34C was used because the algorithm that it uses
provides greater accuracy in a shorter time than does the Master Library Simpson’s
rule program of the TI-59. For example, the three-digit scientific notation format
with the HP-34C gives a result of —log /= 15.38760326 in about 2.6 min for the
case with m =0, E£=30 kcal mole™!, and T=400K. The TI-59 requires a 300
subinterval Simpson’s rule computation and requires about 8.4 min to provide a
result this close to the actual value of 15.38760423. Consequently, the HP-34C
enables a greater accuracy to be obtained in a shorter computing time and it was
used for all the numerical integrations in this work. As is true with the TI-59, a
greater accuracy can be obtained, but at the sacrifice of computing speed. Linear
regression was carried out as previously described [11].

RESULTS AND DISCUSSION
Numerical integration

In the analysis of non-isothermal kinetic data, the values of the temperature
inte_gr_al are needed [1-3]. These can be expressed either in the form

I=fTT’"e‘E/RTdT (1)
0

or the expressions involving Euler’s integral [14—16]. In our previous work, tempera-
ture integrals were evaluated for m =0 and for positive values of m. In order to
complete the set of numerical tables to include negative m. values [17,18], we have
performed numerical integration of cases where m= —1/2, —1, —3/2, and —2.
The results of these evaluations are shown in Tables 1-4. Because of the integration
procedure used, most of these values of —log . are accurate to the full number of
decimal places shown. Previously, it was found that for E = 100 kcal mole ™! and
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T=300K, the integration with m =0 using the TI-59 with a 200 subinterval
integration gave —log7 = 72.60020 compared with a previously reported value of
72.60144 [2]. This combination of E and T resulted in the least accurate —log/
values [10]. Using the HP-34C with the accuracy level specified earlier, the value
obtained is —log I = 72.60128. Consequently, the largest error in Tables 1-4 (which
occurs with E= 100 kcal mole ™! and 7'=300K) is about 0.00016 and the error
decreases rapidly for other combinations representing lower E and /or higher T
values.

Dependence of —logl on E and 1/T

"It was previously shown that values of —logJ obey the relationships

—logI=ME+ B (2)
and
—logI=N(1/T)+ D (3)

where, M, B, N and D are constants [3,11]. Thus, these constants have been
determined for cases where m =0 [3,10) and m=1/2, 1, 3/2, and 2 {11]. In this
work, we have established eqns. (2) and (3) for aegative values of m by relating
—log! to E and 1/T by linear regression. Tables5 and 6 present the regression
parameters for these equations. From the data presented and those previously
published [11], it is readily apparent that there is no significant difference in the
behaviour of —log/ values obtained where m has negative values.

Equations relating slopes and intercepts

Gyulai and Greenhow [3] reported that the slopes and intercepts in eqns. (2) and
(3) varied in such a way that they could be related to £ and 1/T. Thus, for eqn. (2)

M=KQ1/T)" (4)
and
B=Plog(1/T)+Q (5)

where K, L, P, and Q are constants. This approach was subsequently used for the
—log I values where m has positive values [11]. The slopes and intercepts obtained
with the negative m values used in this work were also studied in this way so that the
equation

—logI=K(1/T)" E+log(1/T)" + Q (6)

can be used for negative m values as well. Table 7 shows the values of K, L, P, and
O obtained by means of linear regression for each of the m values.
The slope and intercept.in eqn. (3) were found to vary as

N=YEX Q)
and _
D=WlogE+ U ' (8)
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TABLE S

Linear regression parameters for —log [JT™ e “¢/RT dT=ME+B

T m=—1/2 m=—1
Ky

Slope (M) Intercept (B}  Corr. Coeff. Slope (M) Intercept (B)  Corr. Coeff.

300 0.735634 0.310591 0.999999 0.735662 1.544084 0.999999
400 0.553476 0.127750 0.999998 0.553526 1.422602 0.999998
500 0.444168 —0.013148 0.999996 0.444229 1.328698 0.999996
600 0.371285 —0.127538 0.999995 0.371357 1.252468 0.999995
700 0.319217 —0.223670 0.999993 0.319300 1.188432 0.999993
800 0.280158 —0.306375 0.999992 0.280251 1.133356 0.999991
900 0.249772 —0.378945 0.999990 0.249875 1.085038 0.999989
1000 0.225457 —0.443489 0.999987 0.225570 1.042069 0.999987

where Y, X, W, and U are constants [3,11]. Thus, the equation
—logl=YEX(1/T)+1og EY +U ' (9)

expresses the complete dependence of —logJ/ on E and 1 /7. The constants Y and X
of egn. (7) as well as W and U of eqn. (8) were obtained by linear regression
establishing eqn. (9) for negative m values. Values of these constants for each value
of m are shown in Table 7. The data shown in Table 7 permit eqns. (6) and (9) to be
used to calculate values of —log/ at any desired value of E and T at m= —1/2,
—1, —3/2, and —2. These results combined with those previously published enable

calculations of —log to be made at any fixed integer or half-integer value of m
from —2 to +2.

TABLE6

Linecar regression parameters ivr —log ff 7™ ¢ ~5/RT dT=N(1/T)+ D

E m=-—1/2 m=-1
(kecal :
mole ™ ') Slope (N) Intercept (D) Corr. Coeff. Slope (N) Intercept (D)  Corr. Coeff.

30 6879.76 —0.546253 0.999968 6771.84 1.029191 0.999985
40 9067.74 —0.431978 0.999981 8959.04 1.146850 0.999991
50 11254.78 —0.341678 0.999988 11 145.57 1.239278 0.999994
60 13441,32 —0.267005 0.999991 1333177 1.315406 ~ 0999996
70 15627.56 —0.203325 0.999993 15514.97 1.384121 0.999997
80 17813.62 —0.147816 0.999995 17703.62 1.436470 0.999998
S0 19969.55 —0.098606 0.999996 19889.39 1.486326 0.999998

100 22185.39 —0.054415 0.999997 22075.11 1.531025 0.999999




(3%
[§¥)

m=—3/2 m=-=2

Slope (M) Intercept ( B) Corr. Coeff.  Slope (M)  Intereept (B) Corr. Coeff.

0.735710 2.778270 0.999999 0.735749 4.012050 0.999999
0.533576 2.717368 0.999998 0.553627 4.012055 0.999997
0.444291 2.670427 0.999996 0.444354 4.012048 0.999996
0.371431 2.632329 0.999995 0.371506 4.012039 0.999994
0.3193R84 2.600338 0.999993 0.319471 4.012027 0.999992
0.280346 2.572831 0.999991 0.280445 4.012041 0.999990
0.249%81 2.548700 0.999988 0.250091 4.012049 0.999988
0.225687 2.527250 0.999986 0.225808 4.012069 0.99998Ss

Relationship between —log I and m

It was previously shown that for a given combination of E and T there is a linear
relationship between —log I and m, viz.

—logI=Am+C (10)

where A and C are constants [11]. Having previously shown that such relationships
exist, a major objective of this work was to use the extended series of m values to
fully establish these relationships. By combining the previous results with those
obtained in this work, a total of nine valuesof m (0, =1/2, =1, =£3/2, and =2) can
now be related to —log ! through linear regression for constant values of £ and T.
For the first time, it is possible to use this large number of data points to establish

m=—3/2 m==2

Slope (M) Intcrcept (D)  Corr. Coeff.  Slope (N}  Intercept (D) Corr. Coeff.

6664.05 2.604239 0.999996 6556.38 4.178884 1.000000

8850.40 2.725461 0.999998 8741.83 4.303834 1.000000
11036.41 2.820085 0.999999 10927.30 4.400729 1.0600000
13222.25 2.897709 0.999999 13112.76 4.479903 1.000000
15407.97 2.963545 0.999999 15289.22 4.546855 1.000000
17593.64 3.020693 0.999999 17483.67 4.604851 1.000000
19779.26 3.071195 1.000000 19669.13 4.656016 1.000000

21964.84 3.116423 1.000000 21854.59 4.701776 1.000000
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the linear dependence of —logJ on m. Table 8 shows the results of linear regression
analysis to determine the constants 4 and C in eqn. (10). In each case, the
correlation coefficient was exactly 1.00....

The results presented here and those presented in previous studies [11] permit any
type of numerical analysis of temperature integrals to be made. Equations (6) and
(9) and the constants given in Tables 5-7 permit computations of —log/ at any
values of £ and 7. not just those tabulated. Further, eqn. (10) and the computed
constants for it shown in Table 8 permit evaluation of —log/ for any value of m.
Therefore. the means are now available to obtain a value for a temperature integral
at any set of conditions that analysis of non-isothermal kinetics requires.

SUMMARY

The results of numerical integration are presented for temperature integrals
having negative temperature exponents, m. For each value of m used (—1/2, —1,
—3/2.and —2). —log/ is linearly related to £ and 7. Linear regression was used to
calculate the slopes and intercepts. These regression parameters were themselves
analyzed as functions of £ and T. By considering results presented here and in
previous studies, equations are presented to relate —log/ accurately to the value of
m. Thus, —log I can now be computed for any value of E, T, and m.
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